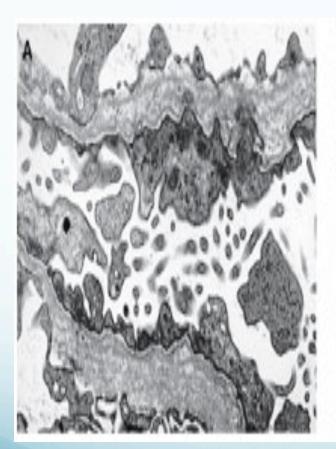
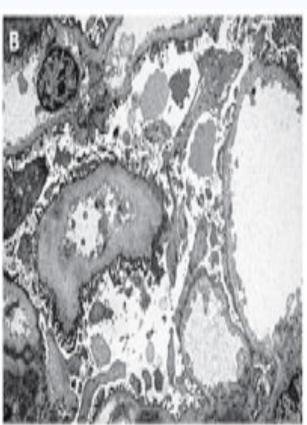
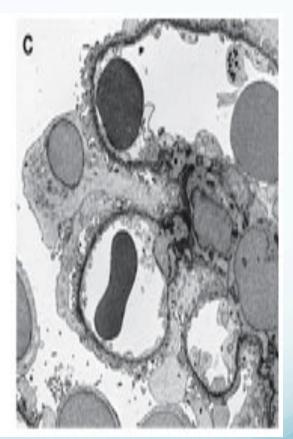
Hereditary Diseases of the Kidneys

Jeff Kaufhold MD FACP March 2015


Hereditary Disease of the kidneys - Summary


- Glomerular diseases
- Hereditary Cystic Diseases
- Hereditary Nephroses
- Wilms Tumor
- Reflux Nephropathy
- Hereditary Stone Diseases


Hereditary Glomerular Diseases

- Alports Syndrome
 - Hereditary Nephritis with sensorineural deafness, corneal opacities (in some Kindreds)
 - Genetic disorder of the Alpha subunit of Type 4 collagen.
 - Benign Familial Hematuria
 - Also known as Thin Basement membrane Disease
 - Nail Patella Syndrome
 - Hereditary Nephritis with finger nail disorder, patellar problems and ischial horn formation.
 - Different collagen gene is affected.

Hereditary Nephritis

Alports

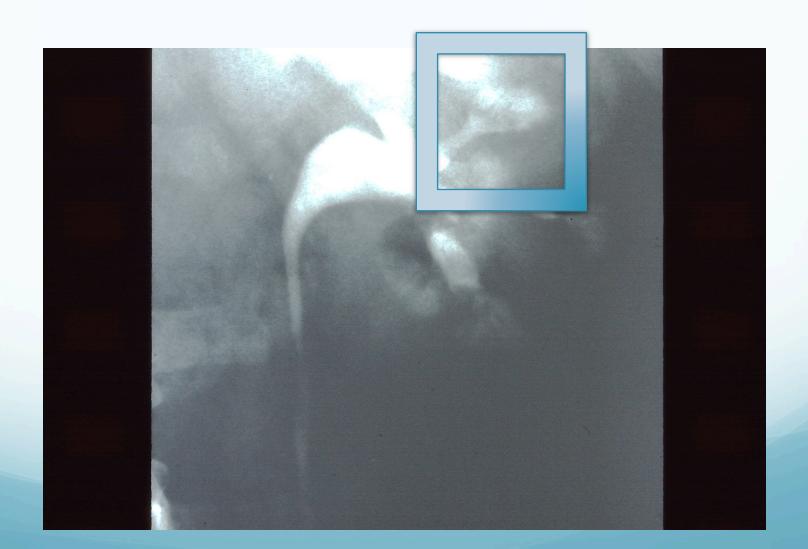
Nail -Patella

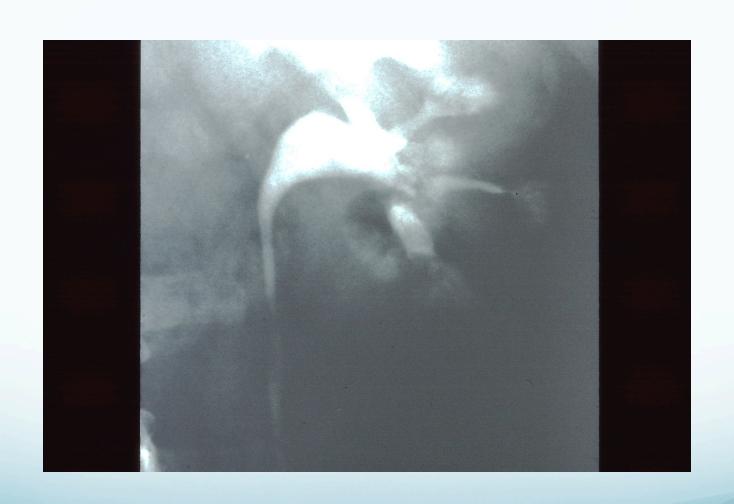
Thin Basement Mem.

Nail Patella Syndrome

Hereditary Cystic Diseases

- Polycystic Kidney Disease PCKD or PKD
 - Autosomal dominant most common type
 - Cysts in Kidneys, Liver, spleen, ovaries
 - Carolies disease (cystic dilation of pancreatic duct) makes risk for recurrent pancreatitis
 - Mitral regurgitation
 - Berry Aneurysms
 - Hepatic fibrosis with hypersplenism and thrombocytopenia
 - Autosomal recessive PKD shows up in children much earlier presentation, as both genes are affected.
 - Variceal hemorrhage is common initial presentation, due to hepatic fibrosis and cirrhosis.


Hereditary Cystic Diseases

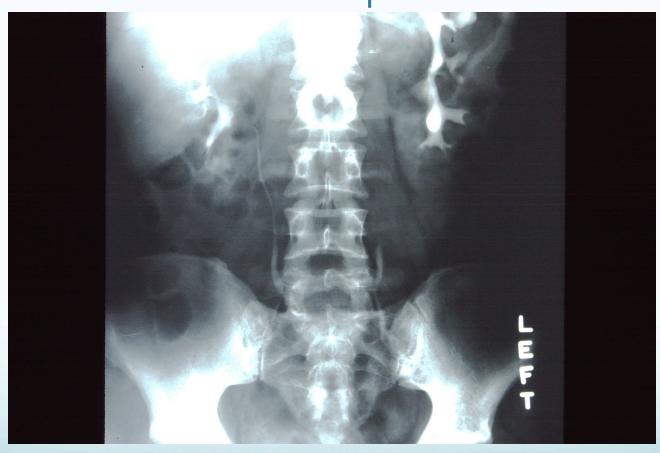

- Polycystic Kidney Disease PCKD or PKD
 - See separate lecture and case study
- Medullary Sponge Kidney
 - Dilation of collecting ducts
 - Leads to slower flow of urine and precipitation of calcium – bouquet of Flowers sign on Xray
 - Kidney stones

IVP chronic hematuria

Bouquet of flowers on IVP

Hereditary Cystic Diseases

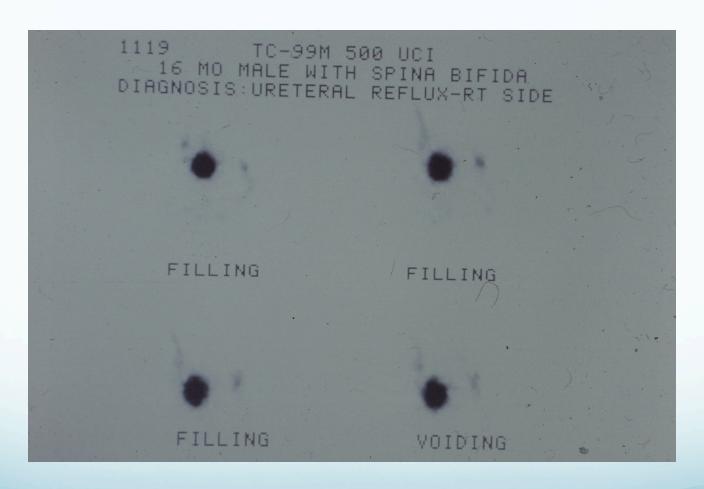
- Hereditary Nephroses
 - Hereditary condition that presents early in life with multicystic kidneys and nephrotic syndrome.
 - Seen in Pediatric nephrology.


Reflux Nephropathy

- Embryology of the kidneys:
 - Start with 6 segments along spine 3 on each side
 - The 3 proto-kidneys fuse to form one kidney on each side
 - All 6 or parts of the kidneys can fuse and form a "horseshoe kidney" or malrotate
 - One of the segments may not fuse normally and result in duplicated artery/ vein or Ureter on one side
 - The ureter forms from the kidney down, AND from the bladder up.
 - The transition point for blood flow from the bladder vs the kidney is variable
 - The ureter may not connect properly to the bladder

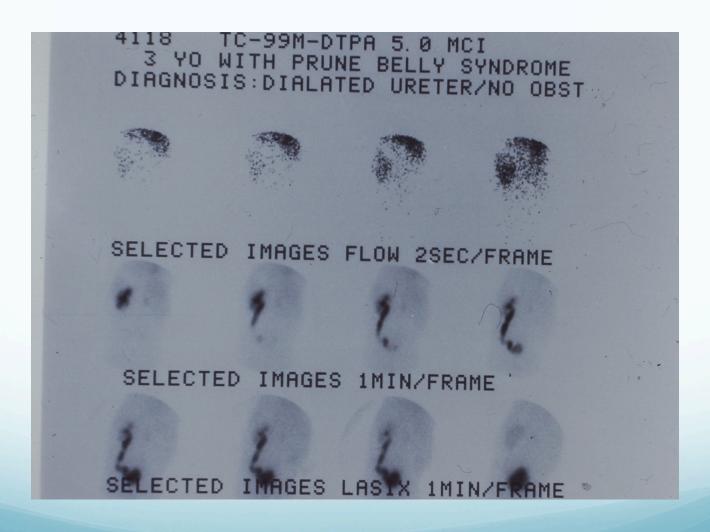
Reflux Nephropathy

- Embryology of the kidneys:
 - The ureter may not connect properly to the bladder
 - Normally there is a valve that keeps urine from refluxing back to the kidney when the bladder contracts
 - When the valve malfunctions, urine is pushed back up the ureter under pressure, and can cause scarring in the kidney on that side
 - This is called Reflux Nephropathy.


IVP with duplicated collecting system on left – hint that reflux may have been present

Female with recurrent kidney stones on Right

16 year old with right sided Ureteral Reflux


Reflux Nephropathy

- Presentations:
 - Recurrent UTI's in childhood or during pregnancy
 - Hypertension presenting in Teens/ 20's
 - Reflux is most common etiology for hypertension in Teen girls
 - Recurrent kidney stones on one side
 - Biopsy of kidney shows focal segmental glomerulosclerosis
 - Proteinuria with Hypertension
 - Glomerular scarring / thinning in upper or lower poles on US.

Reflux Nephropathy

- Presentations:
 - Prune Belly Syndrome
 - Reflux
 - Loss of abdominal wall musculature
 - Renal failure

Nuclear Renal scan with lasix washout

Congenital tumor of Kidney

Wilm's Tumor

Hereditary kidney stone disorders

- Medullary Sponge kidney
- Reflux Nephropathy
- RTA's
- Hypercalciuria Syndromes

RTA's

- Named according to order in which they were described, i.e. severity.
- Type I is worst showing up in children with failure to thrive,
 Ricketts, hypokalemia, stones
- Type II also shows up in children, but not as severe.
- Type III rare
- Type IV not described until diabetics lived long enough to develop renal comps.

Renal Tubular Acidosis

- Type I most severe, occurs in the Distal tubule, and is congenital problem with the transport proteins responsible for excretion of acid.
- Four types of Type I distal RTA:
 - Rate dependent (defective or decreased pump)
 - Secretory (absent proton pump),
 - Gradient dependent (Backleak of K)
 - Voltage dependent (defective K channels)
 - Seen in sickle cell, obstructive uropathy
 - Potassium channels affected by Amiloride, lithium
- Bicarb can go as low as 8
- HypOkalemia (hypERkalemia in voltage dependent)

Renal Tubular Acidosis

- Type II Proximal Tubular Acidosis
 - Less severe, immaturity of proximal tubule leads to bicarb loss.
 - Corrects during puberty
 - Bicarb usually 15 or greater
 - HypOkalemia
 - Large bicarb requirement
 - Stones, Failure to thrive.
 - 11 types associated with conditions such as myeloma, Fanconi's syndrome.

Type II Proximal RTA subtypes

- Hereditary
 - Fanconi syndrome
 - Wilson's dz, Cystinosis
 - Tyrosinemia, Pyruvate Carboxylase Deficiency
- Acquired
 - 1. Drugs (TCN, Gent, Glue sniffer, GMP)
 - 2. Heavy Metals
 - 3. Immunologic disease (sjogrens, Myeloma)
 - 4. Balkan nephropathy
 - 5. Nephrotic syndrome/ transplant dysfunction
 - 6. Osteoporosis
 - 7. PNH

Acquired Fanconi's Syndrome

- Features:
 - Glucosuria with normal serum glucose
 - Metabolic acidosis with bicarbonate wasting in urine
 - Phophaturia
 - Hypokalemia, hypouricemia, hypophosphatemia
- Most commonly due to drug toxicity

Acquired Fanconi's Syndrome

- Most commonly due to drug toxicity
 - Can appear after years of exposure
 - Can take weeks to months to resolve
 - Recovery may be incomplete
- Drugs that cause Fanconi syndrome:
 - Platinum and alkalating chemotherapy agents
 - Aminoglycosides
 - Valproic acid
 - Tenofovir and many other antiviral agents.

Renal Tubular Acidosis

- Type III
 - Small kindred of children born with Combo of type I distal RTA AND tubular immaturity of proximal tubule type II RTA. Have features of both, and the proximal tubule disorder corrects after puberty, leaving them with a true Type I distal RTA.

Renal Tubular Acidosis

- Type IV RTA
 - Also known as Hypoaldosteronism, Hyporeninism.
 - Problem with ammoniagenesis
 - Commonly seen in Diabetics, Sarcoidosis, Chronic
 Pyelonephritis, Gouty nephropathy, chronic rejection
 - Bicarb as low as 18, may be 22
 - HypERkalemia out of proportion to their renal dysfunction.

Type IV RTA subtypes

- Aldosterone Deficient
 - 1. Adrenal Insufficiency
 - 2. Hyporenin/hypoaldo (seen in Diabetics)
 - 3. Chloride shunt (Gordon's syndrome)
- Aldosterone Resistant
 - 4. PseudohypoAldosteronism
 - Will have HIGH levels of aldo: receptor is damaged
 - Pseudo-pseudo-hypoaldo patients have phenotype, but normal aldosterone function
 - 5. Early childhood type IV RTA from interstitial disease

Diagnosis

- First you must suspect RTA in patients with
 - Unexplained bone disease
 - Muscle weakness
 - Nephrocalcinosis
 - Glycosuria/aminoaciduria
 - Kidney stones
 - Non-Gap metabolic acidosis
 - Failure to thrive in children
 - Associated diseases (Diabetes, Gout, Myeloma)

Diagnosis of RTA

- Workup
 - Lytes and BUN/Creat
 - Measured bicarb < 15 is Type I RTA
 - Bicarb 15-18 is Type II proximal RTA
 - Bicarb > 18 with high K is Type IV RTA
 - Urine pH in basal state AND during bicarb supplementation
 - Urine pH > 7 means pt is spilling bicarbonate into urine (i.e Type II proximal RTA)
 - Urine pH > 6 in pt with severe acidosis probably means they are unable to excrete an acid load (Type I Distal RTA)
 - Urine pCO2 (normal level = 32.7 + /-3 mm/Hg)

Hypercalciuria Incidence

- Stones account for 7-10 per 1000 hospital admissions
- 12% of population will form a stone during their lifetime
- Men affected 2-3x more than women
- Peak onset third decade
- Highest incidence in fifth and sixth decades

Stone Composition

- Calcium oxalate alone or with apatite= 60-70%
- Pure apatite= 7%
- Brushite (calcium monohydrogen phosphate dihydrate)= 1%
- Struvite (magnesium ammonium phosphate hexahydrate)= 10-20%
- Uric acid=5-10%
- Cystine= 1-2%

Stone Composition- Rare Stones

- Xanthine stone- xanthine oxidase deficiency
- 2,8-dihydroxyadenine stones- adenine phosphoribosyltransferase deficiency
- Acid ammonium urate stones- chronic diarrhea and hypokalemia
- Oxypurinol and xanthine stones- pts taking allopurinol

Stone Composition- Rare Stones

- Triamterene stones- pts taking triamterene
- Protein "matrix" stones

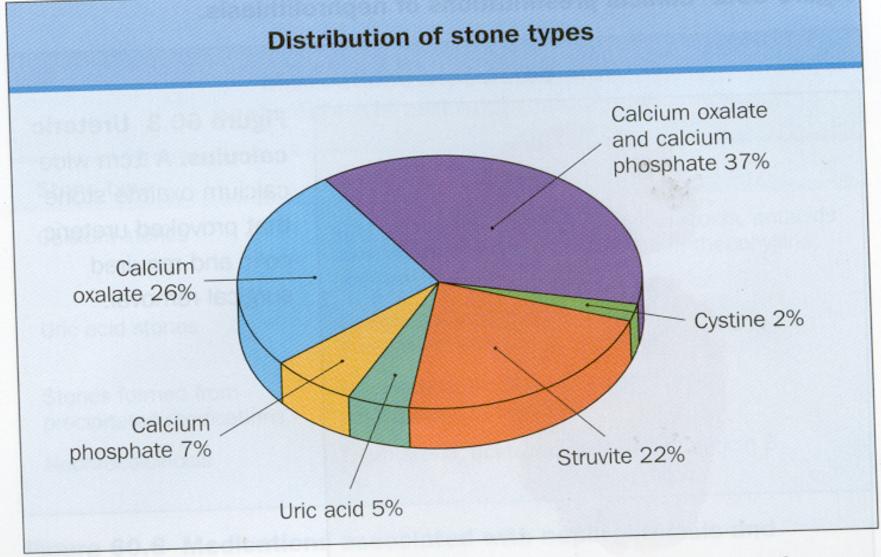


Figure 60.1 Proportion of stone types in a typical US population.

Cystine Stones

- Cystinuria is a rare hereditary disorder
 - tubular defect in dibasic amino acid transport
 - Increased cystine, ornithine, lysine and arginine excretion
- Stones seen by fourth decade
- Staghorn or multiple bilateral stones

Hereditary Disease of the kidneys - Summary

- Glomerular diseases
- Hereditary Cystic Diseases
- Hereditary Nephroses
- Wilms Tumor
- Reflux Nephropathy
- Hereditary Stone Diseases